Robot navigation traditionally relies on building an explicit map that is used to plan collision-free trajectories to a desired target. In deformable, complex terrain, using geometric-based approaches can fail to find a path due to mischaracterizing deformable objects as rigid and impassable. Instead, we learn to predict an estimate of traversability of terrain regions and to prefer regions that are easier to navigate (e.g., short grass over small shrubs). Rather than predicting collisions, we instead regress on realized error compared to a canonical dynamics model. We train with an on-policy approach, resulting in successful navigation policies using as little as 50 minutes of training data split across simulation and real world. Our learning-based navigation system is a sample efficient short-term planner that we demonstrate on a Clearpath Husky navigating through a variety of terrain including grassland and forest
翻译:机器人导航传统上依赖于建立一个清晰的地图,用于规划不碰撞轨道以达到预期目标。 在可变、复杂地形中,使用基于几何方法无法找到一条路径,因为错误地描述变形物体为僵硬和不易行。相反,我们学会预测地形区域的可穿行性,更喜欢较易导航的区域(如小灌木的短草和小灌木的短草),而不是预测碰撞。我们不是预测碰撞,而是在已经实现的误差上退步,而不是用一种罐头动力模型。我们用一种政策性方法培训,导致成功的导航政策,使用不到50分钟的培训数据跨越模拟和现实世界。我们基于学习的导航系统是一个高效的短期抽样规划器,我们通过包括草场和森林在内的各种地形进行清晰的Husky导航演示。