In this work, we present an analysis of the generalization of Neural Operators (NOs) and derived architectures. We proposed a family of networks, which we name (${\textit{s}}{\text{NO}}+\varepsilon$), where we modify the layout of NOs towards an architecture resembling a Transformer; mainly, we substitute the Attention module with the Integral Operator part of NOs. The resulting network preserves universality, has a better generalization to unseen data, and similar number of parameters as NOs. On the one hand, we study numerically the generalization by gradually transforming NOs into ${\textit{s}}{\text{NO}}+\varepsilon$ and verifying a reduction of the test loss considering a time-harmonic wave dataset with different frequencies. We perform the following changes in NOs: (a) we split the Integral Operator (non-local) and the (local) feed-forward network (MLP) into different layers, generating a {\it sequential} structure which we call sequential Neural Operator (${\textit{s}}{\text{NO}}$), (b) we add the skip connection, and layer normalization in ${\textit{s}}{\text{NO}}$, and (c) we incorporate dropout and stochastic depth that allows us to generate deep networks. In each case, we observe a decrease in the test loss in a wide variety of initialization, indicating that our changes outperform the NO. On the other hand, building on infinite-dimensional Statistics, and in particular the Dudley Theorem, we provide bounds of the Rademacher complexity of NOs and ${\textit{s}}{\text{NO}}$, and we find the following relationship: the upper bound of the Rademacher complexity of the ${\textit{s}}{\text{NO}}$ is a lower-bound of the NOs, thereby, the generalization error bound of ${\textit{s}}{\text{NO}}$ is smaller than NO, which further strengthens our numerical results.


翻译:在此工作中, 我们对神经操作员( NOs) 和衍生架构进行常规化分析 。 我们建议了一组网络, 我们命名为 $( textit{ sá{ text{ no ⁇ varepsilon$ ), 将NOs 的布局修改为一个类似变形器的架构; 我们主要将注意模块替换为 NOs 的综合操作员部分 。 由此产生的网络维护了普遍性, 对隐性数据有更好的概括化, 以及类似NOs 的更小参数 。 一方面, 我们通过将NOs 逐渐转换为 $( textit{ no ⁇ text{ noávarpsilon$ ), 核实测试损失的减少情况, 以不同频率修改时间- 协调波浪数据数据集。 我们将综合操作员( 非本地) 和( 本地) 反馈网络( MLL) 分成不同的层, 产生一个连续操作员结构 ( text{ text{ { norent_n_ $$) 。 (b) 在初始关系中, 我们增加数字连接, 和图层 测试中的 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月15日
Arxiv
13+阅读 · 2021年7月20日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员