Image super-resolution (SR) is a representative low-level vision problem. Although deep SR networks have achieved extraordinary success, we are still unaware of their working mechanisms. Specifically, whether SR networks can learn semantic information, or just perform complex mapping function? What hinders SR networks from generalizing to real-world data? These questions not only raise our curiosity, but also influence SR network development. In this paper, we make the primary attempt to answer the above fundamental questions. After comprehensively analyzing the feature representations (via dimensionality reduction and visualization), we successfully discover the distinctive "semantics" in SR networks, i.e., deep degradation representations (DDR), which relate to image degradation instead of image content. We show that a well-trained deep SR network is naturally a good descriptor of degradation information. Our experiments also reveal two key factors (adversarial learning and global residual) that influence the extraction of such semantics. We further apply DDR in several interesting applications (such as distortion identification, blind SR and generalization evaluation) and achieve promising results, demonstrating the correctness and effectiveness of our findings.
翻译:图像超分辨率(SR)是一个具有代表性的低层次视觉问题。虽然深层次的SR网络取得了非凡的成功,但我们仍然不知道它们的工作机制。 具体地说,SR网络能否学习语义信息,还是只是履行复杂的绘图功能? 是什么阻碍SR网络将数据概括化为真实世界的数据? 这些问题不仅提高了我们的好奇心,而且还影响了SR网络的发展。 在本文中,我们主要试图回答上述基本问题。 在全面分析特征表现(通过维度减低和直观化)之后,我们成功地发现了SR网络中与图像退化有关的独特的“语义学”,即深度退化表现(DDR),这与图像内容有关。我们表明,受过良好训练的深层次SR网络自然是退化信息的良好描述。我们的实验还揭示了影响提取这种语义的两个关键因素(对抗性学习和全球残留物 ) 。 我们还在几个有趣的应用中应用了DCP(如扭曲识别、盲线SR和一般化评估),并取得了有希望的结果,显示了我们的调查结果的正确性和有效性。