A kernel method for estimating a probability density function (pdf) from an i.i.d. sample drawn from such density is presented. Our estimator is a linear combination of kernel functions, the coefficients of which are determined by a linear equation. An error analysis for the mean integrated squared error is established in a general reproducing kernel Hilbert space setting. The theory developed is then applied to estimate pdfs belonging to weighted Korobov spaces, for which a dimension independent convergence rate is established. Under a suitable smoothness assumption, our method attains a rate arbitrarily close to the optimal rate. Numerical results support our theory.
翻译:从 i.d. 样本中从此密度中提取的样本中估算概率密度函数(pdf)的内核方法(pdf) 。 我们的测算器是内核函数的线性组合,其系数由线性方程式决定。 在普通复制内核 Hilbert 空间设置中确定了对平均集成方形错误的错误分析。 然后,开发的理论应用到对属于加权的 Korobov 空间的pdf 进行估计,为此确定了一个维度独立的趋同率。在适当的平滑假设下,我们的方法达到了与最佳速率任意接近的速率。数字结果支持我们的理论。