We present a parallelized optimization method based on fast Neural Radiance Fields (NeRF) for estimating 6-DoF target poses. Given a single observed RGB image of the target, we can predict the translation and rotation of the camera by minimizing the residual between pixels rendered from a fast NeRF model and pixels in the observed image. We integrate a momentum-based camera extrinsic optimization procedure into Instant Neural Graphics Primitives, a recent exceptionally fast NeRF implementation. By introducing parallel Monte Carlo sampling into the pose estimation task, our method overcomes local minima and improves efficiency in a more extensive search space. We also show the importance of adopting a more robust pixel-based loss function to reduce error. Experiments demonstrate that our method can achieve improved generalization and robustness on both synthetic and real-world benchmarks.
翻译:我们展示了一种基于快速神经辐射场的平行优化方法,用于估计6-DoF目标配置。根据一个观测到的目标的 RGB 图像,我们可以预测摄像头的翻译和旋转,办法是将快速 NERF 模型和被观测图像的像素之间的残渣最小化。我们把基于动力的相机外部优化程序纳入即时神经图形初始程序,这是最近非常快速的 NERF 实施程序。我们的方法通过将平行的Monte Carlo 取样引入构成的估测任务,克服了本地的迷你,并在更广泛的搜索空间提高了效率。我们还表明采用更强大的像素损失功能来减少错误的重要性。实验表明,我们的方法可以改进合成和现实世界基准的普及和稳健性。