Using publicly accessible maps, we propose a novel vehicle localization method that can be applied without using prior light detection and ranging (LiDAR) maps. Our method generates OSM descriptors by calculating the distances to buildings from a location in OpenStreetMap at a regular angle, and LiDAR descriptors by calculating the shortest distances to building points from the current location at a regular angle. Comparing the OSM descriptors and LiDAR descriptors yields a highly accurate vehicle localization result. Compared to methods that use prior LiDAR maps, our method presents two main advantages: (1) vehicle localization is not limited to only places with previously acquired LiDAR maps, and (2) our method is comparable to LiDAR map-based methods, and especially outperforms the other methods with respect to the top one candidate at KITTI dataset sequence 00.
翻译:使用公众可访问的地图,我们建议一种新颖的车辆本地化方法,无需使用先前的光探测和测距(LiDAR)地图即可应用。我们的方法通过以固定角度计算从OpenStreetMap地点到建筑物的距离,生成了OSM描述符;通过以固定角度计算从目前地点到建筑点的最短距离,生成了LiDAR描述符。比较OSM描述符和LiDAR描述符可以产生一个非常精确的车辆本地化结果。与使用先前的LiDAR地图的方法相比,我们的方法具有两个主要优势:(1) 车辆本地化方法不限于以前获得LiDAR地图的地点,以及(2) 我们的方法与基于LiDAR地图的方法相近,特别是超越了KITTI数据集100序列中最高级候选人的其他方法。