The choice of a suitable regularization parameter is an important part of most regularization methods for inverse problems. In the absence of reliable estimates of the noise level, heuristic parameter choice rules can be used to accomplish this task. While they are already fairly well-understood and tested in the case of linear problems, not much is known about their behaviour for nonlinear problems and even less in the respective case of iterative regularization. Hence, in this paper, we numerically study the performance of some of these rules when used to determine a stopping index for Landweber iteration for various nonlinear inverse problems. These are chosen from different practically relevant fields such as integral equations, parameter estimation, and tomography.
翻译:选择适当的正规化参数是大多数反向问题的正规化方法的一个重要部分。在对噪音水平没有可靠的估计的情况下,可以使用超自然参数选择规则来完成这项任务。虽然在线性问题的情况下,这些参数选择规则已经相当清楚并经过测试,但对于非线性问题的行为了解不多,对于迭代性正规化的情况则了解更少。因此,在本文件中,在用来确定Landweber对各种非线性反向问题的停用索引时,我们用数字来研究其中一些规则的性能。这些规则是从不同实际相关的领域选择的,如整体方程、参数估计和透视。