Modeling sets is an important problem in machine learning since this type of data can be found in many domains. A promising approach defines a family of permutation invariant densities with continuous normalizing flows. This allows us to maximize the likelihood directly and sample new realizations with ease. In this work, we demonstrate how calculating the trace, a crucial step in this method, raises issues that occur both during training and inference, limiting its practicality. We propose an alternative way of defining permutation equivariant transformations that give closed form trace. This leads not only to improvements while training, but also to better final performance. We demonstrate the benefits of our approach on point processes and general set modeling.
翻译:建模组是机器学习中的一个重要问题,因为这种类型的数据可以在许多领域找到。一种很有希望的方法界定了变异密度的大家庭,并不断实现正常流动。这使我们能够方便地尽可能直接地和抽样地发现新的成就。在这项工作中,我们展示了计算追踪这一方法中的一个关键步骤如何在培训和推论期间产生问题,限制了其实用性。我们提出了另一种方法,用以界定具有封闭形式跟踪的变异等同变异变异变异。这不仅导致培训过程中的改进,而且提高了最后的性能。我们展示了我们的方法在定点过程和一般设置模型上的好处。