We show how the Schur-Weyl duality that exists between the partition algebra and the symmetric group results in a stronger theoretical foundation for characterising all of the possible permutation equivariant neural networks whose layers are some tensor power of the permutation representation $M_n$ of the symmetric group $S_n$. In doing so, we unify two separate bodies of literature, and we correct some of the major results that are now widely quoted by the machine learning community. In particular, we find a basis of matrices for the learnable, linear, permutation equivariant layer functions between such tensor power spaces in the standard basis of $M_n$ by using an elegant graphical representation of a basis of set partitions for the partition algebra and its related vector spaces. Also, we show how we can calculate the number of weights that must appear in these layer functions by looking at certain paths through the McKay quiver for $M_n$. Finally, we describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries.
翻译:我们展示了分区代数和对称组之间存在的Schur-Weyl二元的双重性如何使所有可能的变异等异性神经网络具有更坚实的理论基础,这些网络的层层是对称组的对称表达面的微弱能量 $M_n美元。 在这样做时,我们将两个单独的文献机构统一起来,并纠正机器学习界目前广泛引用的一些主要结果。特别是,我们找到一个矩阵基础,用于在标准基数为$M_n 的标准基数的这些变异电源空间之间可学习的、线性、等异性层函数的矩阵,方法是使用优雅的图形表达法,为分区代数及其相关矢量空间设定分区分配分区分配区的基础。此外,我们展示了如何通过读取M_n美元MKay quiver的某些路径来计算这些层函数中必须显示的重量数。最后,我们描述了我们如何在构建对本地正弦化的内线性网络所采用的方法。