We present mGENRE, a sequence-to-sequence system for the Multilingual Entity Linking (MEL) problem -- the task of resolving language-specific mentions to a multilingual Knowledge Base (KB). For a mention in a given language, mGENRE predicts the name of the target entity left-to-right, token-by-token in an autoregressive fashion. The autoregressive formulation allows us to effectively cross-encode mention string and entity names to capture more interactions than the standard dot product between mention and entity vectors. It also enables fast search within a large KB even for mentions that do not appear in mention tables and with no need for large-scale vector indices. While prior MEL works use a single representation for each entity, we match against entity names of as many languages as possible, which allows exploiting language connections between source input and target name. Moreover, in a zero-shot setting on languages with no training data at all, mGENRE treats the target language as a latent variable that is marginalized at prediction time. This leads to over 50% improvements in average accuracy. We show the efficacy of our approach through extensive evaluation including experiments on three popular MEL benchmarks where mGENRE establishes new state-of-the-art results. Code and pre-trained models at https://github.com/facebookresearch/GENRE.
翻译:我们介绍了多语言实体链接问题(MEL)的顺序到顺序系统MGENRE,这是一个多语言实体链接问题(MEL)的顺序到顺序系统 -- -- 解决在多语言知识库(KB)中提及特定语言的问题的任务。为了用一种特定语言提及,MGENRE以自动递进的方式预测目标实体的左对右、按顺序排列的名称。自动递进式的提法使我们能够有效地交叉编码提及字符串和实体名称,以获取比标准点产品更多的互动。它也使我们能够在大型KB中快速搜索,即使提及在提及表格中并不出现,也不需要大规模矢量指数。在之前,MEL使用一个单一的表示方式,用尽可能多种语言的实体名称进行匹配,从而能够利用源投入和目标名称之间的语言联系。此外,在完全没有培训数据的语言的零点设置中, mGENRERE将目标语言视为在预测时被边缘化的潜在变量。这导致平均50%以上的准确性改进。我们通过广泛评估模式(包括IMGEN/MGEN)之前的测试,展示了我们的方法的效力,在新的MGENBRB/MBRA/BRBRBRA前的3 实验中确立了结果。