Web search queries can be rather ambiguous: Is "paris hilton" meant to find the latest news on the celebrity or to find a specific hotel in Paris? And in which of the worldwide more than 20 "Parises"? We propose to solve this ambiguity problem by deriving entity-based query interpretations: given some query, the task is to link suitable parts of the query to semantically compatible entities in a background knowledge base. Our suggested approach to identify the most reasonable interpretations of a query based on the contained entities focuses on effectiveness but also on efficiency since web search response times should not exceed some hundreds of milliseconds. In our approach, we propose to use query segmentation as a pre-processing step that finds promising segment-based "skeletons". These skeletons are then enhanced to "interpretations" by linking the contained segments to entities from a knowledge base and then ranking the interpretations in a final step. An experimental comparison on a corpus of 2,800 queries shows our approach to have a better interpretation accuracy at a better run time than the previously most effective query entity linking methods.
翻译:网络搜索查询可能相当模糊: “ 帕里斯· 希尔顿” 指的是寻找有关名人的最新消息还是在巴黎找到一个特定的酒店? 以及全世界20多个“ 巴黎” 中的哪个? 我们提议通过基于实体的查询解释来解决这一模糊问题: 给某些查询, 任务是将查询的适当部分与背景知识库中符合语义的实体连接起来。 我们建议的方法是确定基于所包含实体的查询的最合理的解释, 侧重于有效性, 但也侧重于效率, 因为网络搜索响应时间不应超过数百毫秒。 我们的方法是, 将查询分割作为预处理步骤, 找到有希望的基于区段的“ 斯凯顿” 。 这些骨架随后通过将包含部分与一个知识库的实体连接起来, 并在最后一步中排列解释顺序。 对2 800个查询的文集进行实验性比较, 表明我们的方法是在比以前最有效的查询实体连接方法更精准的运行时间提高解释准确性。