When solving two-player zero-sum games, multi-agent reinforcement learning (MARL) algorithms often create populations of agents where, at each iteration, a new agent is discovered as the best response to a mixture over the opponent population. Within such a process, the update rules of "who to compete with" (i.e., the opponent mixture) and "how to beat them" (i.e., finding best responses) are underpinned by manually developed game theoretical principles such as fictitious play and Double Oracle. In this paper we introduce a framework, LMAC, based on meta-gradient descent that automates the discovery of the update rule without explicit human design. Specifically, we parameterise the opponent selection module by neural networks and the best-response module by optimisation subroutines, and update their parameters solely via interaction with the game engine, where both players aim to minimise their exploitability. Surprisingly, even without human design, the discovered MARL algorithms achieve competitive or even better performance with the state-of-the-art population-based game solvers (e.g., PSRO) on Games of Skill, differentiable Lotto, non-transitive Mixture Games, Iterated Matching Pennies, and Kuhn Poker. Additionally, we show that LMAC is able to generalise from small games to large games, for example training on Kuhn Poker and outperforming PSRO on Leduc Poker. Our work inspires a promising future direction to discover general MARL algorithms solely from data.
翻译:当解决双玩者零和游戏时,多试剂强化学习(MARL)算法(MARL)的算法往往会形成一个代理商群,在每次迭代中,发现一个新的代理商是针对对手群中混合的最佳反应。在这个过程中,更新“谁与谁竞争”(即对手混合)和“如何击败他们”(即找到最佳反应)的规则得到了人工开发的游戏理论原则的支持,比如假游戏和双甲骨文。在本文中,我们引入了一个框架,即仅LMAC,这个框架的基础是以新渐变的基底基底基底基底基底,让更新规则的发现不具有明确的人类设计。具体地说,我们通过神经网络和最佳反应模块对对手选择模块进行参数的参数进行参数调整,仅通过与游戏引擎的互动更新“谁与谁竞争”(即对手混合混合)和“如何打败他们”(即找到最佳反应)规则。令人惊讶的是,即使没有人类设计,所发现的MAR算法总算法也实现了竞争性或更好的表现,在以新人基底游戏的精度的游戏解决方案解决者(eg、PRO)上,我们在运动运动的不易变的游戏,从我们不透明运动会、不透明、不透明、不透明的游戏、不透明的游戏中,从我们不透明的游戏、不透明地展示的游戏到不透明、不透明、不透明地展示的游戏、不透明的游戏,从常规的游戏、不透明的游戏、不透明的游戏、不透明的游戏、不透明的游戏中,从常规的游戏、不透明的游戏到不透明的游戏、不透明的游戏、不透明的游戏、不透明的游戏、不透明的游戏、不透明的游戏,从我们不透明的游戏,从我们不透明的游戏的游戏的游戏、不透明的游戏、不透明的游戏的游戏、不透明的游戏、不透明的游戏、不透明的游戏、不透明的游戏、不透明的游戏、不透明的游戏、不透明的游戏,从我们不透明的游戏到纸。