Game theory provides essential analysis in many applications of strategic interactions. However, the question of how to construct a game model and what is its fidelity is seldom addressed. In this work, we consider learning in a class of repeated zero-sum games with unknown, time-varying payoff matrix, and noisy feedbacks, by making use of an ensemble of benchmark game models. These models can be pre-trained and collected dynamically during sequential plays. They serve as prior side information and imperfectly underpin the unknown true game model. We propose OFULinMat, an episodic learning algorithm that integrates the adaptive estimation of game models and the learning of the strategies. The proposed algorithm is shown to achieve a sublinear bound on the saddle-point regret. We show that this algorithm is provably efficient through both theoretical analysis and numerical examples. We use a dynamic honeypot allocation game as a case study to illustrate and corroborate our results. We also discuss the relationship and highlight the difference between our framework and the classical adversarial multi-armed bandit framework.


翻译:游戏理论在许多战略互动应用中提供了基本分析。 但是, 如何构建游戏模型及其忠实性的问题很少被讨论。 在这项工作中, 我们考虑在一系列重复的零和游戏中学习, 使用一系列基准游戏模型, 使用一系列基准游戏模型。 这些模型可以在连续游戏中预先训练并动态收集。 这些模型可以作为前侧信息, 不完善地支持未知的真实游戏模型。 我们提出OUFLINMat, 这是一种将游戏模型的适应性估计和战略的学习结合起来的直观学习算法。 提议的算法显示可以实现马鞍式遗憾的亚线性约束。 我们通过理论分析和数字示例显示, 这种算法非常有效。 我们用一个动态的蜂蜜分配游戏作为案例研究, 来说明和证实我们的成果。 我们还讨论我们的框架与经典对立式多臂强力框架之间的关系并突出差异。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Untangling Braids with Multi-agent Q-Learning
Arxiv
0+阅读 · 2021年9月29日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
3+阅读 · 2018年10月8日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员