Graph analytics are vital in fields such as social networks, biomedical research, and graph neural networks (GNNs). However, traditional CPUs and GPUs struggle with the memory bottlenecks caused by large graph datasets and their fine-grained memory accesses. While specialized graph accelerators address these challenges, they often support only moderate-sized graphs (under 500 million edges). Our paper proposes Swift, a novel scale-up graph accelerator framework that processes large graphs by leveraging the flexibility of FPGA custom datapath and memory resources, and optimizes utilization of high-bandwidth 3D memory (HBM). Swift supports up to 8 FPGAs in a node. Swift introduces a decoupled, asynchronous model based on the Gather-Apply-Scatter (GAS) scheme. It subgraphs across FPGAs, and each subgraph into intervals based on source vertex IDs. Processing on these intervals is decoupled and executed asynchronously, instead of bulk-synchonous operation, where throughput is limited by the slowest task. This enables simultaneous processing within each multi-FPGA node and optimizes the utilization of communication (PCIe), off-chip (HBM), and on-chip BRAM/URAM resources. Swift demonstrates significant performance improvements compared to prior scalable FPGA-based frameworks, performing 12.8 times better than the ForeGraph. Performance against Gunrock on NVIDIA A40 GPUs is mixed, because NVlink gives the GPU system a nearly 5X bandwidth advantage, but the FPGA system nevertheless achieves 2.6x greater energy efficiency.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员