The pandemic caused by SARS-CoV-2 has left an unprecedented impact on health, economy and society worldwide. Emerging strains are making pandemic management increasingly challenging. There is an urge to collect epidemiological, clinical, and physiological data to make an informed decision on mitigation measures. Advances in the Internet of Things (IoT) and edge computing provide solutions for pandemic management through data collection and intelligent computation. While existing data-driven architectures attempt to automate decision-making, they do not capture the multifaceted interaction among computational models, communication infrastructure, and the generated data. In this paper, we perform a survey of the existing approaches for pandemic management, including online data repositories and contact-tracing applications. We then envision a unified pandemic management architecture that leverages the IoT and edge computing to automate recommendations on vaccine distribution, dynamic lockdown, mobility scheduling and pandemic prediction. We elucidate the flow of data among the layers of the architecture, namely, cloud, edge and end device layers. Moreover, we address the privacy implications, threats, regulations, and existing solutions that may be adapted to optimize the utility of health data with security guarantees. The paper ends with a lowdown on the limitations of the architecture and research directions to enhance its practicality.
翻译:SARS-CoV-2的大流行病对全世界卫生、经济和社会产生了前所未有的影响。新出现的菌株正在使大流行病管理变得日益具有挑战性。人们强烈要求收集流行病学、临床和生理数据,以便就缓解措施作出知情的决定。Thine Internet(IoT)和边缘计算的进步通过数据收集和智能计算为大流行病管理提供了解决办法。虽然现有的数据驱动结构试图使决策自动化,但是它们并不反映计算模型、通信基础设施和生成的数据之间的多方面互动。在本文中,我们对现有大流行病管理方法进行调查,包括在线数据储存库和联络追踪应用程序。然后,我们设想一个统一的大流行病管理结构,利用IoT和优势计算,将疫苗分配、动态锁定、流动时间安排和大流行病预测等方面的建议自动化。我们阐述了结构层之间的数据流动情况,即云层、边缘层和末端装置层。此外,我们讨论了隐私影响、威胁、条例和现有解决办法,这些办法可能进行调整,以优化健康数据与安全保障的效用。文件最后是低调的建筑和方向,以强化其实际方向。