Most of the work in auction design literature assumes that bidders behave rationally based on the information available for each individual auction. However, in today's online advertising markets, one of the most important real-life applications of auction design, the data and computational power required to bid optimally are only available to the auction designer, and an advertiser can only participate by setting performance objectives (clicks, conversions, etc.) for the campaign. In this paper, we focus on value-maximizing campaigns with return-on-investment (ROI) constraints, which is widely adopted in many global-scale auto-bidding platforms. Through theoretical analysis and empirical experiments on both synthetic and realistic data, we find that second price auction exhibits many undesirable properties and loses its dominant theoretical advantages in single-item scenarios. In particular, second price auction brings equilibrium multiplicity, non-monotonicity, vulnerability to exploitation by both bidders and even auctioneers, and PPAD-hardness for the system to reach a steady-state. We also explore the broader impacts of the auto-bidding mechanism beyond efficiency and strategyproofness. In particular, the multiplicity of equilibria and the input sensitivity make advertisers' utilities unstable. In addition, the interference among both bidders and advertising slots introduces bias into A/B testing, which hinders the development of even non-bidding components of the platform. The aforementioned phenomena have been widely observed in practice, and our results indicate that one of the reasons might be intrinsic to the underlying auto-bidding mechanism. To deal with these challenges, we provide suggestions and candidate solutions for practitioners.


翻译:拍卖设计文献中的大部分工作都假定投标人根据每一拍卖的现有信息行事合理,然而,在今天的在线广告市场中,拍卖设计中最重要的现实应用是拍卖设计中最重要的现实应用之一,只有拍卖设计人才能获得最佳竞标所需的数据和计算能力,广告商只能通过为该运动设定业绩目标(点击、转换等)参与。在本文中,我们侧重于以回报投资(ROI)限制因素实现价值最大化运动,这在许多全球规模的自动招标平台中得到广泛采用。通过对合成数据和现实数据进行理论分析和实验,我们发现第二次价格拍卖有许多不受欢迎的属性,在单一项目情景中失去了其主要的理论优势。特别是,第二次价格拍卖带来了均衡的多重性、非注意性、对投标人甚至拍卖人剥削的脆弱性,以及系统达到稳定状态的难度。我们还探讨了汽车招标机制在效率和战略防守节制性基础上的广泛影响。 特别是,在Ablibal 的深度和低压性交易中,我们提出了不稳性干预性、不稳性风险性的广告商/低价变机制。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
83+阅读 · 2022年7月16日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员