Individuals or companies in a large social or financial network often display rather heterogeneous behaviors for various reasons. In this work, we propose a network vector autoregressive model with a latent group structure to model heterogeneous dynamic patterns observed from network nodes, for which group-wise network effects and timeinvariant fixed-effects can be naturally incorporated. In our framework, the model parameters and network node memberships can be simultaneously estimated by minimizing a least-squares type objective function. In particular, our theoretical investigation allows the number of latent groups G to be over-specified when achieving the estimation consistency of the model parameters and group memberships, which significantly improves the robustness of the proposed approach. When G is correctly specified, valid statistical inference can be made for model parameters based on the asymptotic normality of the estimators. A data-driven criterion is developed to consistently identify the true group number for practical use. Extensive simulation studies and two real data examples are used to demonstrate the effectiveness of the proposed methodology.
翻译:暂无翻译