In the absence of data from a randomized trial, researchers often aim to use observational data to draw causal inference about the effect of a treatment on a time-to-event outcome. In this context, interest often focuses on the treatment-specific survival curves; that is, the survival curves were the entire population under study to be assigned to receive the treatment or not. Under certain causal conditions, including that all confounders of the treatment-outcome relationship are observed, the treatment-specific survival can be identified with a covariate-adjusted survival function. Several estimators of this function have been proposed, including estimators based on outcome regression, inverse probability weighting, and doubly robust estimators. In this article, we propose a new cross-fitted doubly-robust estimator that incorporates data-adaptive (e.g. machine learning) estimators of the conditional survival functions. We establish conditions on the nuisance estimators under which our estimator is consistent and asymptotically linear, both pointwise and uniformly in time. We also propose a novel ensemble learner for combining multiple candidate estimators of the conditional survival estimators. Notably, our methods and results accommodate events occurring in discrete or continuous time (or both). We investigate the practical performance of our methods using numerical studies and an application to the effect of a surgical treatment to prevent metastases of parotid carcinoma on mortality.


翻译:在缺乏随机试验数据的情况下,研究人员往往试图利用观察数据来推断治疗对时间到活动结果的影响。在这方面,人们的兴趣往往集中在特定治疗的存活曲线上;也就是说,生存曲线是正在研究的全体人口被分配接受治疗;在某些因果关系条件下,包括观察到治疗结果关系的所有混杂者都观察到了有条件生存功能的估算,因此可以确定特定治疗的存活率,并设定一种共变调整生存功能。已经提议了一些对这一功能的估算者,包括基于结果回归的估测器、偏差权重重力和双倍强的估算器。在本篇文章中,我们提出了一个新的交叉搭配的双曲线估算器估算器,将数据适应(e.g.机器学习)的估测器纳入有条件生存功能的估测器。我们设定了我们估算的估算器在实际效果上是一致的,并且是线性直的。我们还提出了在时间上将我们快速和稳定性估算器的精确度应用方法结合起来。我们还提议了一个将长期性研究结果与连续性研究结果相结合的新方法。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年8月11日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员