Fitting Susceptible-Infected-Recovered (SIR) models to incidence data is problematic when not all infected individuals are reported. Assuming an underlying SIR model with general but known distribution for the time to recovery, this paper derives the implied differential-integral equations for observed incidence data when a fixed fraction of newly infected individuals are not observed. The parameters of the resulting system of differential equations are identifiable. Using these differential equations, we develop a stochastic model for the conditional distribution of current disease incidence given the entire past history of reported cases. We estimate the model parameters using Bayesian Markov Chain Monte-Carlo sampling of the posterior distribution. We use our model to estimate the transmission rate and fraction of asymptomatic individuals for the current Coronavirus 2019 outbreak in eight American Countries: the United States of America, Brazil, Mexico, Argentina, Chile, Colombia, Peru, and Panama, from January 2020 to May 2021. Our analysis reveals that consistently, about 40-60% of the infections were not observed in the American outbreaks. The two exception are Mexico and Peru, with acute under-reporting in Mexico.
翻译:如果不是所有受感染者都得到报告,则难以将可感知感染-康复模型应用于发病率数据,如果不是所有受感染者都得到报告,则有问题。假设一个基础性SIR模型具有一般分布但已知分布时间为恢复阶段,本文件在未观察到固定部分新感染者时,为观察到的发病率数据提供了隐含的差别整体方程式。由此产生的差异方程式的参数是可识别的。我们利用这些差异方程式为当前发病率的有条件分布开发了一个随机模型。我们用Bayesian Markov Cain Conte-Carlo对外表分布进行抽样评估。我们使用模型估算了模型参数的模型,对8个美洲国家(美利坚合众国、巴西、墨西哥、阿根廷、智利、哥伦比亚、秘鲁和巴拿马)2019年爆发的Coronna病毒的传播速度和无症状个体的一小部分进行了估算:美国、巴西、墨西哥、墨西哥、墨西哥、哥伦比亚、秘鲁和巴拿马,从2020年1月至2021年5月。我们的分析显示,美国疫情持续有大约40-60%的感染病例没有观察到。有两个例外是墨西哥和秘鲁,墨西哥的急性报告不足。