Adsorption energy is a key reactivity descriptor in catalysis, enabling efficient screening for optimal catalysts. However, determining adsorption energy typically requires evaluating numerous adsorbate-catalyst configurations. Current algorithmic approaches rely on exhaustive enumeration of adsorption sites and configurations, which makes the process computationally intensive and does not inherently guarantee the identification of the global minimum energy. In this work, we introduce Adsorb-Agent, a Large Language Model (LLM) agent designed to efficiently identify system-specific stable adsorption configurations corresponding to the global minimum adsorption energy. Adsorb-Agent leverages its built-in knowledge and emergent reasoning capabilities to strategically explore adsorption configurations likely to hold adsorption energy. By reducing the reliance on exhaustive sampling, it significantly decreases the number of initial configurations required while improving the accuracy of adsorption energy predictions. We evaluate Adsorb-Agent's performance across twenty representative systems encompassing a range of complexities. The Adsorb-Agent successfully identifies comparable adsorption energies for 83.7% of the systems and achieves lower energies, closer to the actual global minimum, for 35% of the systems, while requiring significantly fewer initial configurations than conventional methods. Its capability is particularly evident in complex systems, where it identifies lower adsorption energies for 46.7% of systems involving intermetallic surfaces and 66.7% of systems with large adsorbate molecules. These results demonstrate the potential of Adsorb-Agent to accelerate catalyst discovery by reducing computational costs and improving the reliability of adsorption energy predictions.
翻译:暂无翻译