We develop a constructive theory of finite multisets in Homotopy Type Theory, defining them as free commutative monoids. After recalling basic structural properties of the free commutative-monoid construction, we formalise and establish the categorical universal property of two, necessarily equivalent, algebraic presentations of free commutative monoids using 1-HITs. These presentations correspond to two different equational theories invariably including commutation axioms. In this setting, we prove important structural combinatorial properties of finite multisets. These properties are established in full generality without assuming decidable equality on the carrier set. As an application, we present a constructive formalisation of the relational model of classical linear logic and its differential structure. This leads to constructively establishing that free commutative monoids are conical refinement monoids. Thereon we obtain a characterisation of the equality type of finite multisets and a new presentation of the free commutative-monoid construction as a set-quotient of the list construction. These developments crucially rely on the commutation relation of creation/annihilation operators associated with the free commutative-monoid construction seen as a combinatorial Fock space.
翻译:我们开发了一种具有建设性意义的理论, 即智多端类型理论中有限的多立点, 将其定义为自由通量单体。 在回顾自由通量- 单体构造的基本结构属性后, 我们正式化并建立了两种绝对的普遍属性, 两者必然相等, 使用1- HIT 来表示自由通量单体的代谢性演示。 这些演示与两种不同的等式理论相对应, 必然包括折价轴轴。 在此环境下, 我们证明有限的多立点的结构组合性质很重要。 这些属性是完全笼统地建立的, 并不假定承载器设定的临界平等。 作为应用, 我们展示了经典线性逻辑及其差异结构的关系模型的建设性正规化。 这导致建设性地确定自由通量单体单体是共振性改进单体。 我们从中获得了有限多立点的等式平等性描述, 并重新展示了自由通量型构造的多立点体结构。 这些特性完全建立在完全的通用中, 而不是假定承载器设定的平衡。 作为自由通量制型结构的模型的模型的转换关系。 这些发展关键地依赖于与自由通量制式空间结构结构结构结构的转换关系。