While rankings are at the heart of social science research, little is known about how to analyze ranking data in experimental studies. This paper introduces a potential outcomes framework to perform causal inference when outcome data are ranking data. It introduces causal estimands tailored to ranked outcomes and develops methods for estimation and inference. Furthermore, it extends the framework to partially ranked data by building on principal stratification. I show that partial rankings can be considered a selection problem and propose nonparametric sharp bounds for the treatment effects. Using the methods, I reanalyze the recent study on blame attribution in the Stephon Clark shooting, finding that people's responses to officer-involved shootings are robust to contextual information. I also apply the framework to study ballot order effects in three ranked-choice voting (RCV) elections in 2022, proposing a new theory of pattern rankings in RCV.
翻译:虽然排名是社会科学研究的核心,但在如何分析实验研究中的排名数据方面却鲜为人知。本文介绍了一个潜在结果框架,以便在结果数据是排名数据时进行因果推断;介绍了针对排名结果的因果估计,并制定了估算和推断方法;此外,通过以主要分级为基础,将框架扩大到部分排名数据;我表明部分排名可被视为选择问题,并提出了治疗效果的非对称直径界限。我利用这些方法,重新分析了最近关于史蒂芬·克拉克枪击案的责怪原因的研究,发现人们对军官参与的射击的反应对背景信息是强有力的。我还运用这一框架研究2022年三次排名选举的选票顺序效果,提出了RCV模式排名的新理论。