We develop a new approach for estimating average treatment effects in observational studies with unobserved group-level heterogeneity. We consider a general model with group-level unconfoundedness and provide conditions under which aggregate balancing statistics -- group-level averages of functions of treatments and covariates -- are sufficient to eliminate differences between groups. Building on these results, we reinterpret commonly used linear fixed-effect regression estimators by writing them in the Mundlak form as linear regression estimators without fixed effects but including group averages. We use this representation to develop Generalized Mundlak Estimators (GMEs) that capture group differences through group averages of (functions of) the unit-level variables and adjust for these group differences in flexible and robust ways in the spirit of the modern causal literature.


翻译:我们制定了一个新的方法来估计在未观察到的集团一级差异的观察研究中的平均治疗效果。我们考虑了一个具有集团一级无根据性的一般模型,并提供了各种条件,使总体平衡统计 -- -- 处理和共变功能的集团一级平均数 -- -- 足以消除集团之间的差异。根据这些结果,我们重新解释了常用的线性固定效应回归估计数字,以Mundlak形式将它们写成不具有固定效果但包括集团平均数的线性回归估计数字。我们利用这一表示来开发通用的 Mundlak 模拟器(GMEs),通过单位一级变量(功能)的集团平均数来捕捉群体差异,并本着现代因果文献的精神,灵活和有力地调整这些群体的差异。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月8日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员