Multi-modal MR imaging is routinely used in clinical practice to diagnose and investigate brain tumors by providing rich complementary information. Previous multi-modal MRI segmentation methods usually perform modal fusion by concatenating multi-modal MRIs at an early/middle stage of the network, which hardly explores non-linear dependencies between modalities. In this work, we propose a novel Nested Modality-Aware Transformer (NestedFormer) to explicitly explore the intra-modality and inter-modality relationships of multi-modal MRIs for brain tumor segmentation. Built on the transformer-based multi-encoder and single-decoder structure, we perform nested multi-modal fusion for high-level representations of different modalities and apply modality-sensitive gating (MSG) at lower scales for more effective skip connections. Specifically, the multi-modal fusion is conducted in our proposed Nested Modality-aware Feature Aggregation (NMaFA) module, which enhances long-term dependencies within individual modalities via a tri-orientated spatial-attention transformer, and further complements key contextual information among modalities via a cross-modality attention transformer. Extensive experiments on BraTS2020 benchmark and a private meningiomas segmentation (MeniSeg) dataset show that the NestedFormer clearly outperforms the state-of-the-arts. The code is available at https://github.com/920232796/NestedFormer.
翻译:多式MR成像通常用于临床实践,通过提供丰富的补充信息来诊断和调查脑肿瘤。以前的多式MRI断裂方法通常在网络的早期/中阶段通过混合多式MMSs进行模范融合,很难探索不同模式之间的非线性依赖性。在这项工作中,我们提议了一个新的Nested Modality-Aware变异器(Nested Former),以明确探索用于脑肿瘤分解的多式MRIs内部和现代关系。在基于变压器的多式计算器和单式脱coder结构上,通常通过在网络的早期/中阶段凝聚多式MMSIs,用于不同模式之间的高层次表达和低级应用对模式敏感的G(MSG),用于更有效的跳动连接。具体来说,多式融合是在我们提议的Nestedmodality-awary Aforal Agrealation(NMAFAFA)模块中进行,该模块在基于变压的单个模式内更长期依赖性多式多式多式多式多式的多式混合,通过三式软式模型,在可变式模型中演示式模型中演示式的模型中演示式模型中演示式的模型中演示式的演示式模型,通过可变压式的模型式模型式模型式的演示式的演示式模型式模型式模型式的演示式的演示式矩阵式矩阵式矩阵式的演示式演示式矩阵式演示式结构演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式演示式模。