The current Internet lacks a bandwidth-reservation infrastructure that enables fine-grained inter-domain reservations for end hosts. This is hindering the provisioning of quality-of-service guarantees for real-time applications like video calls and gaming, cloud-based systems, financial transactions, telesurgery, and other remote applications that benefit from reliable communication. This paper introduces Hummingbird, a novel lightweight inter-domain bandwidth-reservation system that addresses several shortcomings of previous designs. Hummingbird supports flexible and composable reservations and enables end-to-end guarantees without requiring autonomous systems to manage reservations for their endhosts. Previous systems tied reservations to autonomous-system numbers or network addresses, which limits the flexibility of reservations. In contrast, our system decouples reservations from network identities and, as a result, the control plane from the data plane. This design choice facilitates multiple co-existing control-plane mechanisms and enables innovative approaches, such as a control plane based on blockchain smart contracts that offers tradeable bandwidth-reservation assets and end-to-end guarantees. The data-plane design ensures simplicity for efficient processing on border routers, which streamlines implementation, deployment, and traffic policing while maintaining robust security properties.
翻译:暂无翻译