We introduce a new general identifiable framework for principled disentanglement referred to as Structured Nonlinear Independent Component Analysis (SNICA). Our contribution is to extend the identifiability theory of deep generative models for a very broad class of structured models. While previous works have shown identifiability for specific classes of time-series models, our theorems extend this to more general temporal structures as well as to models with more complex structures such as spatial dependencies. In particular, we establish the major result that identifiability for this framework holds even in the presence of noise of unknown distribution. Finally, as an example of our framework's flexibility, we introduce the first nonlinear ICA model for time-series that combines the following very useful properties: it accounts for both nonstationarity and autocorrelation in a fully unsupervised setting; performs dimensionality reduction; models hidden states; and enables principled estimation and inference by variational maximum-likelihood.
翻译:我们引入了一个新的可识别的原则解析框架,称为结构化非线性独立组成部分分析(SNICA),我们的贡献是扩大深基因模型的可识别性理论,用于一个非常广泛的结构型模型。虽然以前的工作已经表明具体类别的时间序列模型的可识别性,但我们的理论将这一理论扩展到更一般性的时间结构以及空间依赖等结构更为复杂的模型。特别是,我们建立了这个框架的可识别性的主要结果,即使存在未知分布的噪音也是如此。最后,作为我们框架灵活性的一个例子,我们为时间序列引入了第一个非线性ICA模型,该模型将以下非常有用的特性结合起来:它既考虑到非常态性,又考虑到完全不受监督的环境下的自动关系;进行维度减少;模型隐藏状态;以及允许通过变式最大相似性进行有原则的估算和推断。