We study tail risk dynamics in high-frequency financial markets and their connection with trading activity and market uncertainty. We introduce a dynamic extreme value regression model accommodating both stationary and local unit-root predictors to appropriately capture the time-varying behaviour of the distribution of high-frequency extreme losses. To characterize trading activity and market uncertainty, we consider several volatility and liquidity predictors, and propose a two-step adaptive $L_1$-regularized maximum likelihood estimator to select the most appropriate ones. We establish the oracle property of the proposed estimator for selecting both stationary and local unit-root predictors, and show its good finite sample properties in an extensive simulation study. Studying the high-frequency extreme losses of nine large liquid U.S. stocks using 42 liquidity and volatility predictors, we find the severity of extreme losses to be well predicted by low levels of price impact in period of high volatility of liquidity and volatility.
翻译:我们研究了高频金融市场的尾端风险动态及其与贸易活动和市场不确定性的联系。我们引入了动态极端价值回归模型,既包括固定式又包括地方单位根预测器,以适当捕捉高频极端损失分布的时间变化行为。为了描述交易活动和市场不确定性的特点,我们考虑了若干波动和流动性预测器,并提出了一个分两步的适应性最大可能性估算器,以选择最合适的。我们为选择固定式和本地单位根预测器确定了拟议估算器的奥秘属性,并在一项广泛的模拟研究中展示了其良好的有限样本特性。利用42个流动性和波动预测器研究9个大型美国流动储量的高频极端损失,我们发现在流动性和波动性高度波动期间,由于价格影响低,极端损失的严重程度可以很好地预测。