Multi-arm bandits are gaining popularity as they enable real-world sequential decision-making across application areas, including clinical trials, recommender systems, and online decision-making. Consequently, there is an increased desire to use the available adaptively collected datasets to distinguish whether one arm was more effective than the other, e.g., which product or treatment was more effective. Unfortunately, existing tools fail to provide valid inference when data is collected adaptively or require many untestable and technical assumptions, e.g., stationarity, iid rewards, bounded random variables, etc. Our paper introduces the design-based approach to inference for multi-arm bandits, where we condition the full set of potential outcomes and perform inference on the obtained sample. Our paper constructs valid confidence intervals for both the reward mean of any arm and the mean reward difference between any arms in an assumption-light manner, allowing the rewards to be arbitrarily distributed, non-iid, and from non-stationary distributions. In addition to confidence intervals, we also provide valid design-based confidence sequences, sequences of confidence intervals that have uniform type-1 error guarantees over time. Confidence sequences allow the agent to perform a hypothesis test as the data arrives sequentially and stop the experiment as soon as the agent is satisfied with the inference, e.g., the mean reward of an arm is statistically significantly higher than a desired threshold.


翻译:多武器匪徒越来越受欢迎,因为他们能够让现实世界在应用领域,包括临床试验、推荐人系统和在线决策等领域进行顺序决策,因此,人们越来越希望利用现有的适应性收集的数据集来区分一个手臂是否比另一个手臂更有效,例如哪种产品或治疗更有效。不幸的是,当数据是适应性收集或要求许多无法测试的和技术假设,例如,静态、iid奖赏、受约束随机变量等数据时,现有工具无法提供有效的推论。我们的文件还引入了基于设计的方法来推断多武器匪徒,我们据此对全部潜在结果作出条件,并在获得的样本上进行推论。我们的文件为任何手臂的奖励平均值和任何武器之间以假设光度方式的平均奖励差异建立了有效的信任间隔,允许任意分配、非二次和不定期分配的奖赏。除了信任间隔外,我们还提供了基于设计的有效的信任序列、信任期顺序、具有统一型一型潜在结果并对获得的样本进行推论。我们的文件建立了有效的信任间隔期,从而保证了任何手臂的等级,信任序列能够以假设的方式大大地进行排序。</s>

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员