We introduce a new Shapley value approach for global sensitivity analysis and machine learning explainability. The method is based on the first-order partial derivatives of the underlying function. The computational complexity of the method is linear in dimension (number of features), as opposed to the exponential complexity of other Shapley value approaches in the literature. Examples from global sensitivity analysis and machine learning are used to compare the method numerically with activity scores, SHAP, and KernelSHAP.


翻译:我们引入了一种基于底层函数的一阶偏导数的新 Shapley 值方法,用于全局敏感度分析和机器学习可解释性。与其他文献中的 Shapley 值方法的指数复杂度相比,该方法的计算复杂度仅为维数(特征数量)的线性级别。使用全局敏感度分析和机器学习的示例来与活动分数、SHAP和KernelSHAP进行数值比较。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
77+阅读 · 2021年12月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月15日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员