We introduce a new Shapley value approach for global sensitivity analysis and machine learning explainability. The method is based on the first-order partial derivatives of the underlying function. The computational complexity of the method is linear in dimension (number of features), as opposed to the exponential complexity of other Shapley value approaches in the literature. Examples from global sensitivity analysis and machine learning are used to compare the method numerically with activity scores, SHAP, and KernelSHAP.
翻译:我们引入了一种基于底层函数的一阶偏导数的新 Shapley 值方法,用于全局敏感度分析和机器学习可解释性。与其他文献中的 Shapley 值方法的指数复杂度相比,该方法的计算复杂度仅为维数(特征数量)的线性级别。使用全局敏感度分析和机器学习的示例来与活动分数、SHAP和KernelSHAP进行数值比较。