项目名称: 基于基因和路径的动物全基因组关联分析方法
项目编号: No.31201774
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 畜牧学与草地科学、兽医学、水产学
项目作者: 周晓晶
作者单位: 黑龙江八一农垦大学
项目金额: 22万元
中文摘要: 在动物全基因组关联研究中,单个SNP分析通常检测到大量显著的但作用很小的SNP,因而对复杂性状的遗传变异仅提供了有限的理解。以基因和生化或代谢路径等为分析目标,利用构成它们的SNP观测信息,能够鉴定可以解释复杂性状更大遗传变异的功能单位。引用Kolmogorov-Smirnov和Maxmean统计量来表征基因和路径对目标性状的影响,采用置换检验或重标准化方法去判定基因和路径对目标性状作用的显著性。为了降低构成基因集SNP间的共线性对分析结果的影响,并考虑SNP间的交互作用,我们又引入主成分分析方法,从大量相关和互作的SNP中提炼出较少的独立分析单元,以期提高估计基因和路径遗传作用的计算效率以及统计的准确性和可靠性。计算机模拟验证和检验新方法的有效性和适应性,并与现行方法和其他统计量进行比较。新方法将应用于一系列公开使用的人类复杂疾病全基因组数据和中国西门达尔牛屠宰性状的全基因组关联分析。
中文关键词: 全基因组关联分析;SNP;基因;路径;QTL
英文摘要: In the animal genome-wide association study, single SNP analysis often identifies a number of the most significant SNPs that account for only a small proportion of the genetic variants, so that offers limited understanding of genetic variation about complex traits. By the observed information on SNPs and the knowledge about genes and pathway, we will conduct gene-based analysis coupled with pathway-based analysis, which can identify functional units for interpreting much larger genetic variation of complex traits. Kolmogorov-Smirnov and Maxmean statistics are introduced to characterize the impact of genes and path on the target traits and permutation test and re-standardization method are used to infer statistical significance. In order to reduce the collinearity among SNPs and considering the interaction between SNPs, we adopt the principal component analysis to extract independent analyzed units, which will improve computational efficiency and statistical accuracy and reliability. Computer simulation experiments will be used to demonstrate the effectiveness and adaptability of the proposed methods by comparing with the existing methods and other statistics. Our approaches will be applied to analyzing the genome-wide data on a series of public complex human diseases and slaughtering traits in Chinese Simmental
英文关键词: GWAS;SNP;gene;pathway;QTL