Successful continual learning of new knowledge would enable intelligent systems to recognize more and more classes of objects. However, current intelligent systems often fail to correctly recognize previously learned classes of objects when updated to learn new classes. It is widely believed that such downgraded performance is solely due to the catastrophic forgetting of previously learned knowledge. In this study, we argue that the class confusion phenomena may also play a role in downgrading the classification performance during continual learning, i.e., the high similarity between new classes and any previously learned classes would also cause the classifier to make mistakes in recognizing these old classes, even if the knowledge of these old classes is not forgotten. To alleviate the class confusion issue, we propose a discriminative distillation strategy to help the classify well learn the discriminative features between confusing classes during continual learning. Experiments on multiple natural image classification tasks support that the proposed distillation strategy, when combined with existing methods, is effective in further improving continual learning.


翻译:对新知识的不断成功学习将使智能系统能够识别越来越多的对象类别。 但是,当前的智能系统在更新以学习新类时往往无法正确识别以前学到的物体类别。 人们普遍认为,这种降级表现完全是由于灾难性地忘记了以前学到的知识。 在本研究中,我们认为,班级混乱现象也可能在不断学习期间降低分类表现方面起到作用,即新类与以前学到的任何类别之间的高度相似性也会导致分类者在认识这些旧类时犯错误,即使这些旧类的知识没有被遗忘。为了缓解班级混乱问题,我们提议了一项歧视性的蒸馏战略,以帮助对在不断学习期间混淆的班级之间的歧视性特征进行分类。关于多重自然图像分类的实验支持,如果与现有方法相结合,拟议的蒸馏战略将有效地进一步改进持续学习。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
Arxiv
126+阅读 · 2020年9月6日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
5+阅读 · 2019年6月5日
Learning Discriminative Model Prediction for Tracking
Arxiv
13+阅读 · 2019年1月26日
Arxiv
6+阅读 · 2018年12月10日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
相关论文
Top
微信扫码咨询专知VIP会员