Mixed-precision quantization is a popular approach for compressing deep neural networks (DNNs). However, it is challenging to scale the performance efficiently with mixed-precision DNNs given the current FPGA architecture and conventional accelerator dataflows. In this work, we enhance the FPGA's capability for accelerating mixed-precision DNNs by proposing M4BRAM, a novel compute-in-block RAM (BRAM) architecture that can compute mixed-precision matrix-matrix multiplication. On the precision side, M4BRAM supports a wide range of mixed-precision DNN configurations -- the weight precision can be 2/4/8 bits while the activation precision can vary from 2 to 8 bits. On the dataflow side, M4BRAM leverages a novel in-BRAM data duplication scheme to achieve high hardware utilization. Moreover, during M4BRAM computation, other FPGA resources can seamlessly access its data without the need for a separate buffer. Hence, unlike prior compute-in-BRAM proposals, M4BRAM can simultaneously perform mixed-precision computation and maintain full functionality as a memory unit to \textit{truly} complement the existing compute resources on FPGAs. Experiments show that adding M4BRAM to a tiled DNN accelerator can achieve an average speedup of 2.16$\times$ across various DNNs on the ImageNet classification task while incurring a negligible accuracy loss of $<$ 0.5%. Compared to the same tiled accelerator that employs a prior compute-in-BRAM architecture, M4BRAM delivers 1.43$\times$ higher performance on average across various DNNs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FPGA:ACM/SIGDA International Symposium on Field-Programmable Gate Arrays。 Explanation:ACM/SIGDA现场可编程门阵列国际研讨会。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/fpga/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员