In this paper, we provide simpler reductions from Exact Triangle to two important problems in fine-grained complexity: Exact Triangle with Few Zero-Weight $4$-Cycles and All-Edges Sparse Triangle. Exact Triangle instances with few zero-weight $4$-cycles was considered by Jin and Xu [STOC 2023], who used it as an intermediate problem to show $3$SUM hardness of All-Edges Sparse Triangle with few $4$-cycles (independently obtained by Abboud, Bringmann and Fischer [STOC 2023]), which is further used to show $3$SUM hardness of a variety of problems, including $4$-Cycle Enumeration, Offline Approximate Distance Oracle, Dynamic Approximate Shortest Paths and All-Nodes Shortest Cycles. We provide a simple reduction from Exact Triangle to Exact Triangle with few zero-weight $4$-cycles. Our new reduction not only simplifies Jin and Xu's previous reduction, but also strengthens the conditional lower bounds from being under the $3$SUM hypothesis to the even more believable Exact Triangle hypothesis. As a result, all conditional lower bounds shown by Jin and Xu [STOC 2023] and by Abboud, Bringmann and Fischer [STOC 2023] using All-Edges Sparse Triangle with few $4$-cycles as an intermediate problem now also hold under the Exact Triangle hypothesis. We also provide two alternative proofs of the conditional lower bound of the All-Edges Sparse Triangle problem under the Exact Triangle hypothesis, which was originally proved by Vassilevska Williams and Xu [FOCS 2020]. Both of our new reductions are simpler, and one of them is also deterministic -- all previous reductions from Exact Triangle or 3SUM to All-Edges Sparse Triangle (including P\u{a}tra\c{s}cu's seminal work [STOC 2010]) were randomized.
翻译:暂无翻译