We present that by predicting the spectrum in discrete space from the phase shift in continuous space, the neural network can remarkably reproduce the numerical L\"uscher's formula to a high precision. The model-independent property of the L\"uscher's formula is naturally realized by the generalizability of the neural network. This exhibits the great potential of the neural network to extract model-independent relation between model-dependent quantities, and this data-driven approach could greatly facilitate the discovery of the physical principles underneath the intricate data.
翻译:我们提出,通过预测从连续空间的相位转移到离散空间的频谱,神经网络可以将数字L\“uscher”的公式复制到一个高度精确的公式。L\“uscher”公式的模型独立属性自然地通过神经网络的通用性而实现。这显示了神经网络在分离模型独立数量之间独立关系的巨大潜力,而这种数据驱动方法可以极大地促进在复杂数据下发现物理原理。