In this paper, we introduce the problem of unitarization. Unitarization is the problem of taking several input quantum circuits that produce orthogonal states from the all 0 state, and create an output circuit implementing a unitary with its first columns as those states. We allow the resulting circuits, and even the input circuits, to use ancilla qubits initialized to 0. But ancilla qubits must always be returned to 0 for ANY input, and we are only guaranteed the input circuits returns ancilla qubits to 0 on the all 0 input. The unitarization problem seems hard if the output states are neither orthogonal to or in the span of the computational basis vectors that need to map to them. In this work, we approximately solve this problem in the case where input circuits are given as black box oracles by probably finding an approximate basis for our states. This method may be more interesting than the application. Specifically, we find an approximate basis in polynomial time for the following parameters. Take any natural $n$, $k = O\left(\frac{\ln(n)}{\ln(\ln(n))}\right)$, and $\epsilon = 2^{-O(\sqrt{\ln(n)})}$. Take any $k$ input unit vectors, $(\lvert \psi_i \rangle)_{i\in [k]}$ on polynomial in $n$ qubits prepared by quantum oracles, $(V_i)_{i \in [k]}$, (that we can control call and control invert). Then there is a quantum circuit with polynomial size in $n$ and access to the oracles $(V_i)_{i \in [k]}$ that with at least $1 - \epsilon$ probability, computes at most $k$ circuits with size polynomial in $n$ and oracle access to $(V_i)_{i \in [k]}$ that $\epsilon$ approximately computes an $\epsilon$ approximate orthonormal basis for $(\lvert \psi_i \rangle)_{i\in [k]}$.
翻译:在本文中, 我们引入了 unitization 问题。 单数电路的问题在于从所有 0 种状态中选择产生正正方位状态的数个输入量电路, 并创建一个输出电路以第一个列的形式实施统一。 我们允许由此生成的电路, 甚至输入电路, 初始化为 0 。 但是 ancilla 位子必须总是返回 0, 用于任何输入, 我们只能保证输入电路返回所有 0 个输入量的 Ancilla 量电路返回 0 。 如果输出状态不是以正方位为正方位的, 那么当输入电路被作为黑箱或电路标时, 我们就会解决这个问题 。 具体地说, 使用 美元 美元 或 美元 美元 或 美元 方位 的调量 。 任何自然 美元 、 美元 和 美元 以 美元 以 或 美元 方位 以 或 方位 方位 。