The Initial Algebra Theorem by Trnkov\'a et al. states, under mild assumptions, that an endofunctor has an initial algebra provided it has a pre-fixed point. The proof crucially depends on transfinitely iterating the functor and in fact shows that, equivalently, the (transfinite) initial-algebra chain stops. We give a constructive proof of the Initial Algebra Theorem that avoids transfinite iteration of the functor. For a given pre-fixed point $A$ of the functor, it uses Pataraia's theorem to obtain the least fixed point of a monotone function on the partial order formed by all subobjects of $A$. Thanks to properties of recursive coalgebras, this least fixed point yields an initial algebra. We obtain new results on fixed points and initial algebras in categories enriched over directed-complete partial orders, again without iteration. Using transfinite iteration we equivalently obtain convergence of the initial-algebra chain as an equivalent condition, overall yielding a streamlined version of the original proof.
翻译:Trnkov\'a 等人的初始代数Theorem 由 Trnkov\'a et al. 等人的初始代数理论在轻度假设下表示, 端点有一个初始代数, 只要它有一个前缀点。 证据关键地取决于对配方的偏移, 并且事实上显示, 等量地, 这个初始代数链站( 纯度) 的初始代数理论可以避免对配方的转基因。 对于给定的配方的预固定点$A$, 它使用 Pataraia 的代数在由所有子项( $A ) 组成的部分顺序上获得单质函数的最不固定点。 由于循环性煤值的特性, 这个最小的端点可以产生初始代数。 我们对固定点和初始代数得出新的结果, 其类别在直接- 完整部分订单上得到丰富, 也无需迭代。 对于给定点的定点和初始代数, 我们使用等同的定点获得初始代数链的合并点, 的初始- 以等同的原始验证值, 整体结果总体条件。