Let a set of nodes $\mathcal X$ in the plain be $n$-independent, i.e., each node has a fundamental polynomial of degree $n.$ Assume that $\#\mathcal X=d(n,k)+3= (n+1)+n+\cdots+(n-k+5)+3$ and $4 \le k\le n-1.$ In this paper we prove that there are at most seven linearly independent curves of degree less than or equal to $k$ that pass through all the nodes of $\mathcal X.$ We provide a characterization of the case when there are exactly seven such curves. Namely, we prove that then the set $\mathcal X$ has a very special construction: all its nodes but three belong to a (maximal) curve of degree $k-3.$ Let us mention that in a series of such results this is the third one. In the end, an important application to the bivariate polynomial interpolation is provided, which is essential also for the study of the Gasca-Maeztu conjecture.
翻译:平原中一组节点$\ mathcccds+(n- k+5)+3美元和4\lek\le n-1美元。 在本文件中,我们证明,最多有7个线性独立曲线,其程度小于或等于美元,通过所有节点($\mathcal X)时,每个节点都具有基本的多度度度值(n.k)+3=(n+1)+nçcdots+(n-k+5)+3美元和4\lek\le n-1美元。在本文中,我们证明,最多有7个线性独立的曲线,其程度小于或等于美元。在完全有7个节点($\ mathcal X.) 时,我们提供了对案例的定性。 也就是说, 我们证明, 设定的 $\ mathcal X$ 有非常特殊的构造: 所有节点但3 都属于一个(maximal) $-3 的曲线。让我们指出, 在一系列结果中,这是第三个结果。。。在最后, 提供了对二变式多点的多点间间断的重要应用, 也是对气体研究的关键。