In this paper we propose a new approach to detect clusters in undirected graphs with attributed vertices. The aim is to group vertices which are similar not only in terms of structural connectivity but also in terms of attribute values. We incorporate structural and attribute similarities between the vertices in an augmented graph by creating additional vertices and edges as proposed in [5, 27]. The augmented graph is embedded in a Euclidean space associated to its Laplacian and apply a modified K-means algorithm to identify clusters. The modified K-means uses a vector distance measure where to each original vertex is assigned a vector-valued set of coordinates depending on both structural connectivity and attribute similarities. To define the coordinate vectors we employ an adaptive AMG (Algebraic MultiGrid) method to identify the coordinate directions in the embedding Euclidean space extending our previous result for graphs without attributes. We demonstrate the effectiveness of our proposed clustering method on both synthetic and real-world attributed graphs.
翻译:在本文中,我们提出一种新的方法来检测无方向图中带有归顺顶点的群集。 目的是将结构连通性与属性值相似的顶点分组。 我们按照[ 5, 27] 中的建议,通过创建额外的顶点和边缘,将顶点的结构和属性相似性纳入一个扩大的图形中。 增强的图形嵌入了与其 Laplacian 相联的欧几里德空间, 并应用了修改过的 K 手段算法来识别群。 修改过的 K 工具使用矢量距离测量, 给每个原始顶点指定一个矢量值的坐标组, 取决于结构连通性和属性相似性。 为了界定协调矢量, 我们使用了适应的 AMG( ALBRIC 多重Grid) 方法, 以确定嵌入 Euclidean 空间的协调方向, 扩展了我们先前的无属性的图形结果。 我们展示了我们在合成和现实世界可归属的图形上提议的组合方法的有效性。