This paper develops an efficient procedure for designing low-complexity codebooks for precoding in a full-dimension (FD) multiple-input multiple-output (MIMO) system with a uniform planar array (UPA) antenna at the transmitter (Tx) using tensor learning. In particular, instead of using statistical channel models, we utilize a model-free data-driven approach with foundations in machine learning to generate codebooks that adapt to the surrounding propagation conditions. We use a tensor representation of the FD-MIMO channel and exploit its properties to design quantized version of the channel precoders. We find the best representation of the optimal precoder as a function of Kronecker Product (KP) of two low-dimensional precoders, respectively corresponding to the horizontal and vertical dimensions of the UPA, obtained from the tensor decomposition of the channel. We then quantize this precoder to design product codebooks such that an average loss in mutual information due to quantization of channel state information (CSI) is minimized. The key technical contribution lies in exploiting the constraints on the precoders to reduce the product codebook design problem to an unsupervised clustering problem on a Cartesian Product Grassmann manifold (CPM), where the cluster centroids form a finite-sized precoder codebook. This codebook can be found efficiently by running a $K$-means clustering on the CPM. With a suitable induced distance metric on the CPM, we show that the construction of product codebooks is equivalent to finding the optimal set of centroids on the factor manifolds corresponding to the horizontal and vertical dimensions. Simulation results are presented to demonstrate the capability of the proposed design criterion in learning the codebooks and the attractive performance of the designed codebooks.
翻译:本文开发了一个高效的程序, 用于设计低复杂度代码手册, 用于在使用感光学习的发报机( Tx) 使用统一的平面阵列天线( UPA), 用于在全diment( FD) 多输入多输出( MIMO) 系统中编解预码。 特别是, 我们不是使用统计频道模型, 而是使用无模型的数据驱动方法, 在机器学习中用基础来生成可适应周围传播条件的代码手册。 我们使用FD- MIMO 频道的发声器代表器, 并利用其属性设计频道预译器的量化版本 。 我们发现最佳的离差码预译器的最佳格式代表着Kronecker Product( KP) 的功能, 与UPA的水平和垂直维度相对应。 然后, 我们将这个预译码转换码转换成产品代码的预代码, 可以通过对频道信息的量化( CSI ) 进行最小化。 关键的技术贡献在于, 如何利用合适的内部智能智能智能智能智能智能智能智能智能智能智能智能智能智能, 来显示系统的CMLIdeal 学习 。