This paper develops an efficient procedure for designing low-complexity codebooks for precoding in a full-dimension (FD) multiple-input multiple-output (MIMO) system with a uniform planar array (UPA) antenna at the transmitter (Tx) using tensor learning. In particular, instead of using statistical channel models, we utilize a model-free data-driven approach with foundations in machine learning to generate codebooks that adapt to the surrounding propagation conditions. We use a tensor representation of the FD-MIMO channel and exploit its properties to design quantized version of the channel precoders. We find the best representation of the optimal precoder as a function of Kronecker Product (KP) of two low-dimensional precoders, respectively corresponding to the horizontal and vertical dimensions of the UPA, obtained from the tensor decomposition of the channel. We then quantize this precoder to design product codebooks such that an average loss in mutual information due to quantization of channel state information (CSI) is minimized. The key technical contribution lies in exploiting the constraints on the precoders to reduce the product codebook design problem to an unsupervised clustering problem on a Cartesian Product Grassmann manifold (CPM), where the cluster centroids form a finite-sized precoder codebook. This codebook can be found efficiently by running a $K$-means clustering on the CPM. With a suitable induced distance metric on the CPM, we show that the construction of product codebooks is equivalent to finding the optimal set of centroids on the factor manifolds corresponding to the horizontal and vertical dimensions. Simulation results are presented to demonstrate the capability of the proposed design criterion in learning the codebooks and the attractive performance of the designed codebooks.


翻译:本文开发了一个高效的程序, 用于设计低复杂度代码手册, 用于在使用感光学习的发报机( Tx) 使用统一的平面阵列天线( UPA), 用于在全diment( FD) 多输入多输出( MIMO) 系统中编解预码。 特别是, 我们不是使用统计频道模型, 而是使用无模型的数据驱动方法, 在机器学习中用基础来生成可适应周围传播条件的代码手册。 我们使用FD- MIMO 频道的发声器代表器, 并利用其属性设计频道预译器的量化版本 。 我们发现最佳的离差码预译器的最佳格式代表着Kronecker Product( KP) 的功能, 与UPA的水平和垂直维度相对应。 然后, 我们将这个预译码转换码转换成产品代码的预代码, 可以通过对频道信息的量化( CSI ) 进行最小化。 关键的技术贡献在于, 如何利用合适的内部智能智能智能智能智能智能智能智能智能智能智能智能智能智能, 来显示系统的CMLIdeal 学习 。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年12月18日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年3月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Practical and Fast Momentum-Based Power Methods
Arxiv
0+阅读 · 2021年8月20日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
3+阅读 · 2018年12月21日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关资讯
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年3月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员