In this paper we are interested in the approximation of fractional powers of self-adjoint positive operators. Starting from the integral representation of the operators, we apply the trapezoidal rule combined with a single-exponential and a double-exponential transform of the integrand function. For the first approach our aim is only to review some theoretical aspects in order to refine the choice of the parameters that allow a faster convergence. As for the double exponential transform, in this work we show how to improve the existing error estimates for the scalar case and also extend the analysis to operators. We report some numerical experiments to show the reliability of the estimates obtained.


翻译:在本文中,我们感兴趣的是自我联合积极操作者的几分力近似值。 从操作者的整体代表开始,我们应用了诱杀性规则,同时对正数函数进行单一耗益和双重耗益转换。我们的第一个目的是审查一些理论方面,以便改进能够更快地趋同的参数的选择。关于双倍指数变换,我们在此工作中展示了如何改进对标度案例的现有误差估计,并将分析扩大到操作者。我们报告了一些数字实验,以显示所得出的估计数的可靠性。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2021年5月26日
专知会员服务
51+阅读 · 2020年12月14日
Python图像处理,366页pdf,Image Operators Image Processing in Python
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2021年5月26日
专知会员服务
51+阅读 · 2020年12月14日
Python图像处理,366页pdf,Image Operators Image Processing in Python
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员