In this paper, we investigate the combination of multigrid methods and neural networks, starting from a Finite Element discretization of an elliptic PDE. Multigrid methods use interpolation operators to transfer information between different levels of approximation. These operators are crucial for fast convergence of multigrid, but they are generally unknown. We propose Deep Neural Network models for learning interpolation operators and we build a multilevel hierarchy based on the output of the network. We investigate the accuracy of the interpolation operator predicted by the Neural Network, testing it with different network architectures. This Neural Network approach for the construction of grid operators can then be extended for an automatic definition of multilevel solvers, allowing a portable solution in scientific computing
翻译:在本文中,我们调查多电网方法和神经网络的结合情况,首先从对椭圆PDE的有限分解要素开始。多电网方法使用内插操作员在不同近似水平之间传递信息。这些操作员对于多电网的快速融合至关重要,但一般不为人所知。我们提出了深神经网络模型,用于学习内插操作员,我们根据网络的输出建立了一个多层次的等级。我们调查了神经网络预测的内插操作员的准确性,并用不同的网络结构进行了测试。然后,可以扩展建造电网操作员的这种神经网络方法,以便自动定义多电网操作员,从而允许科学计算中的便携式解决方案。