This paper considers the initial value problem of general nonlinear stochastic fractional integro-differential equations with weakly singular kernels. Our effort is devoted to establishing some fine estimates to include all the cases of Abel-type singular kernels. Firstly, the existence, uniqueness and continuous dependence on the initial value of the true solution under local Lipschitz condition and linear growth condition are derived in detail. Secondly, the Euler--Maruyama method is developed for solving numerically the equation, and then its strong convergence is proven under the same conditions as the well-posedness. Moreover, we obtain the accurate convergence rate of this method under global Lipschitz condition and linear growth condition. In particular, the Euler--Maruyama method can reach strong first-order superconvergence when $\alpha = 1$. Finally, several numerical tests are reported for verification of the theoretical findings.
翻译:本文探讨了普通非线性随机分数分异方程式与微弱单内核的初始价值问题。 我们致力于建立一些精细的估算,以包括Abel型单内核的所有案例。 首先,根据当地Lipschitz条件和线性增长条件,真实解决方案的存在、独特性和持续依赖初始价值是详尽的。 其次,Euler-Maruyama方法是用来从数字上解决方程式的,然后,在与保有条件相同的条件下,其高度趋同得到了证明。此外,我们在全球Lipschitz条件和线性增长条件下获得了这种方法的精确趋同率。特别是,Euler-Maruyama方法在$\alpha=1美元的情况下,可以达到强一阶超相容。 最后,报告了一些数字测试,以核实理论结论。