System Evolution Analytics on a system that evolves is a challenge because it makes a State Series SS = {S1, S2... SN} (i.e., a set of states ordered by time) with several inter-connected entities changing over time. We present stability characteristics of interesting evolution rules occurring in multiple states. We defined an evolution rule with its stability as the fraction of states in which the rule is interesting. Extensively, we defined stable rule as the evolution rule having stability that exceeds a given threshold minimum stability (minStab). We also defined persistence metric, a quantitative measure of persistent entity-connections. We explain this with an approach and algorithm for System Network Analytics (SysNet-Analytics), which uses minStab to retrieve Network Evolution Rules (NERs) and Stable NERs (SNERs). The retrieved information is used to calculate a proposed System Network Persistence (SNP) metric. This work is automated as a SysNet-Analytics Tool to demonstrate application on real world systems including: software system, natural-language system, retail market system, and IMDb system. We quantified stability and persistence of entity-connections in a system state series. This results in evolution information, which helps in system evolution analytics based on knowledge discovery and data mining.
翻译:系统进化分析 系统进化分析是一个挑战, 因为它使国家序列 SS = {S1, S2... sN} (即按时间顺序排列的一组国家), 几个相互关联的实体随时间变化而变化。 我们展示了多个国家中有趣的进化规则的稳定性特点。 我们定义了一个进化规则, 其稳定性是规则引人注意的国家的一小部分。 我们广泛定义了稳定的进化规则, 其稳定性超过给定的最低限度稳定性( minStab) 。 我们还定义了持久性指标, 这是一种实体连接的量化计量尺度。 我们用系统分析器( SysNet-Analytics) 的方法和算法来解释这一点, 系统分析器使用微调来检索网络进化规则( NERs) 和稳定 NERs 。 检索的信息用于计算一个拟议的系统网络 Persistence (SNP) 量度。 这项工作是自动化的SysNet- Anatictrical 工具, 以演示对真实世界系统的应用, 包括:软件系统系统系统、 系统、 系统、 零售市场系统、 系统、 和IMDDDSDA 数据库的稳定性和 的量化。