Trace reconstruction considers the task of recovering an unknown string $x \in \{0,1\}^n$ given a number of independent "traces", i.e., subsequences of $x$ obtained by randomly and independently deleting every symbol of $x$ with some probability $p$. The information-theoretic limit of the number of traces needed to recover a string of length $n$ are still unknown. This limit is essentially the same as the number of traces needed to determine, given strings $x$ and $y$ and traces of one of them, which string is the source. The most studied class of algorithms for the worst-case version of the problem are "mean-based" algorithms. These are a restricted class of distinguishers that only use the mean value of each coordinate on the given samples. In this work we study limitations of mean-based algorithms on strings at small Hamming or edit distance. We show on the one hand that distinguishing strings that are nearby in Hamming distance is "easy" for such distinguishers. On the other hand, we show that distinguishing strings that are nearby in edit distance is "hard" for mean-based algorithms. Along the way we also describe a connection to the famous Prouhet-Tarry-Escott (PTE) problem, which shows a barrier to finding explicit hard-to-distinguish strings: namely such strings would imply explicit short solutions to the PTE problem, a well-known difficult problem in number theory. Our techniques rely on complex analysis arguments that involve careful trigonometric estimates, and algebraic techniques that include applications of Descartes' rule of signs for polynomials over the reals.


翻译:重建时要找到一个未知的字符串 $x $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 0. 1 ⁇ 美元 美元 美元 美元 美元 0. 1 美元 美元 美元 美元 美元, 多个独立的“ 追踪”, 也就是说, 随机和独立地删除每个符号 $x $ $ 美元 美元 美元 美元 美元 美元 的子序列 。 恢复一个长度 $ $ 0. 1 美元 的线索 。 重建任务中, 恢复一个未知的字符数量基本上与确定, 给 字符串 $xxxxx 美元 美元 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 美元 美元 美元 和 其中之一 的 的痕迹, 来源是 。 。 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题, 问题 问题 问题 问题 问题 问题, 问题 问题 问题 问题 问题, 问题 问题 问题 问题 问题 问题 问题 问题 问题, 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 。 问题 问题 问题 问题 问题 问题 问题 问题 问题, 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题 问题

0
下载
关闭预览

相关内容

【2020新书】数据科学与机器学习导论,220页pdf
专知会员服务
81+阅读 · 2020年9月14日
专知会员服务
18+阅读 · 2020年9月6日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
5+阅读 · 2019年6月5日
VIP会员
相关VIP内容
【2020新书】数据科学与机器学习导论,220页pdf
专知会员服务
81+阅读 · 2020年9月14日
专知会员服务
18+阅读 · 2020年9月6日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员