Magnetic resonance imaging (MRI) is an important medical imaging modality, but its acquisition speed is quite slow due to the physiological limitations. Recently, super-resolution methods have shown excellent performance in accelerating MRI. In some circumstances, it is difficult to obtain high-resolution images even with prolonged scan time. Therefore, we proposed a novel super-resolution method that uses a generative adversarial network (GAN) with cyclic loss and attention mechanism to generate high-resolution MR images from low-resolution MR images by a factor of 2. We implemented our model on pelvic images from healthy subjects as training and validation data, while those data from patients were used for testing. The MR dataset was obtained using different imaging sequences, including T2, T2W SPAIR, and mDIXON-W. Four methods, i.e., BICUBIC, SRCNN, SRGAN, and EDSR were used for comparison. Structural similarity, peak signal to noise ratio, root mean square error, and variance inflation factor were used as calculation indicators to evaluate the performances of the proposed method. Various experimental results showed that our method can better restore the details of the high-resolution MR image as compared to the other methods. In addition, the reconstructed high-resolution MR image can provide better lesion textures in the tumor patients, which is promising to be used in clinical diagnosis.


翻译:磁共振成像(MRI)是一种重要的医学成像模式,但由于生理限制,其获取速度相当缓慢。最近,超分辨率方法在加速磁共振成像方面表现良好。在某些情况下,即使扫描时间过长,也很难获得高分辨率图像。因此,我们提议了一种新型超级分辨率方法,使用具有周期性损耗和注意机制的基因化对抗网络(GAN),通过低分辨率MR图像生成高分辨率的MR图像。我们实施了从健康科目获得的骨盆图像模型,作为培训和验证数据,而病人的数据被用于测试。MR数据集是使用不同的成像序列取得的,包括T2、T2W SPAIR和 mDIXON-W。 四种方法,即BICUBIC、SRCNNN、SRGAN和EDSR用于比较。 结构相似性、与噪音比率的峰值信号、纯正方错误和差异性通货膨胀系数被用来作为计算指标,用以评价拟议方法的性能。各种实验性结果显示,通过不同的成像序列,包括T2,T2、T2W SP SP SP SPIR 和 mIX-W 和 mission-W。四种方法可以更好地恢复高分辨率分析高分辨率。

0
下载
关闭预览

相关内容

磁流变(Magnetorheological,简称MR)材料是一种流变性能可由磁场控制的新型智能材料。由于其响应快(ms量级)、可逆性好(撤去磁场后,又恢复初始状态)、以及通过调节磁场大小来控制材料的力学性能连续变化,因而近年来在汽车、建筑、振动控制等领域得到广泛应用。
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
SRGAN论文笔记
统计学习与视觉计算组
109+阅读 · 2018年4月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
SRGAN论文笔记
统计学习与视觉计算组
109+阅读 · 2018年4月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员