In this work, we study multi-domain learning for face anti-spoofing(MD-FAS), where a pre-trained FAS model needs to be updated to perform equally well on both source and target domains while only using target domain data for updating. We present a new model for MD-FAS, which addresses the forgetting issue when learning new domain data, while possessing a high level of adaptability. First, we devise a simple yet effective module, called spoof region estimator(SRE), to identify spoof traces in the spoof image. Such spoof traces reflect the source pre-trained model's responses that help upgraded models combat catastrophic forgetting during updating. Unlike prior works that estimate spoof traces which generate multiple outputs or a low-resolution binary mask, SRE produces one single, detailed pixel-wise estimate in an unsupervised manner. Secondly, we propose a novel framework, named FAS-wrapper, which transfers knowledge from the pre-trained models and seamlessly integrates with different FAS models. Lastly, to help the community further advance MD-FAS, we construct a new benchmark based on SIW, SIW-Mv2 and Oulu-NPU, and introduce four distinct protocols for evaluation, where source and target domains are different in terms of spoof type, age, ethnicity, and illumination. Our proposed method achieves superior performance on the MD-FAS benchmark than previous methods. Our code and newly curated SIW-Mv2 are publicly available.
翻译:在这项工作中,我们研究了用于面部防欺骗的多领域学习(MD-FAS),其中需要更新预训练的FAS模型,以在源域和目标域上表现同样出色,同时仅使用目标域数据进行更新。我们提出了一种新的MD-FAS模型,该模型解决了在学习新领域数据时出现的遗忘问题,同时具有高水平的适应性。首先,我们设计了一种简单但有效的模块,称为欺骗区域估计器(SRE),用于识别欺骗图像中的欺骗痕迹。这些欺骗痕迹反映了源预训练模型的响应,有助于升级模型在更新过程中防止灾难性遗忘。与先前估计产生多个输出或低分辨率二进制掩码的工作不同,SRE以无监督的方式产生一个单一的、详细的像素级估计。其次,我们提出了一种新颖的框架,称为FAS-wrapper,它从预训练模型中转移知识,并无缝地集成到不同的FAS模型中。最后,为了帮助社区进一步推进MD-FAS,我们构建了一个基于SIW、SIW-Mv2和Oulu-NPU的全新基准,并引入了四个不同的评估协议,其中源域和目标域在欺骗类型、年龄、种族和照明方面有所不同。我们提出的方法在MD-FAS基准测试中比以前的方法达到了更好的性能。我们的代码和新的SIW-Mv2数据集是公开可用的。