In this paper we present an efficient reachability oracle under single-edge or single-vertex failures for planar directed graphs. Specifically, we show that a planar digraph $G$ can be preprocessed in $O(n\log^2{n}/\log\log{n})$ time, producing an $O(n\log{n})$-space data structure that can answer in $O(\log{n})$ time whether $u$ can reach $v$ in $G$ if the vertex $x$ (the edge~$f$) is removed from $G$, for any query vertices $u,v$ and failed vertex $x$ (failed edge $f$). To the best of our knowledge, this is the first data structure for planar directed graphs with nearly optimal preprocessing time that answers all-pairs queries under any kind of failures in polylogarithmic time. We also consider 2-reachability problems, where we are given a planar digraph $G$ and we wish to determine if there are two vertex-disjoint (edge-disjoint) paths from $u$ to $v$, for query vertices $u,v$. In this setting we provide a nearly optimal 2-reachability oracle, which is the existential variant of the reachability oracle under single failures, with the following bounds. We can construct in $O(n\log^{O(1)}{n})$ time an $O(n\log^{3+o(1)}{n})$-space data structure that can check in $O(\log^{2+o(1)}{n})$ time for any query vertices $u,v$ whether $v$ is 2-reachable from $u$, or otherwise find some separating vertex (edge) $x$ lying on all paths from $u$ to $v$ in $G$. To obtain our results, we follow the general recursive approach of Thorup for reachability in planar graphs [J.~ACM~'04] and we present new data structures which generalize dominator trees and previous data structures for strong-connectivity under failures [Georgiadis et al., SODA~'17]. Our new data structures work also for general digraphs and may be of independent interest.
翻译:在本文中,我们展示了一个高效的可达性或智能数据结构。 在单一对冲或单一对冲图中,我们展示了一个高效的可达性或智能数据结构。 具体地说,我们显示,一个平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面,平面平面平面平面,平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面,平面平面,平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面,平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面