We present a deterministic distributed algorithm in the LOCAL model that finds a proper $(\Delta + 1)$-edge-coloring of an $n$-vertex graph of maximum degree $\Delta$ in $\mathrm{poly}(\Delta, \log n)$ rounds. This is the first nontrivial distributed edge-coloring algorithm that uses only $\Delta+1$ colors (matching the bound given by Vizing's theorem). Our approach is inspired by the recent proof of the measurable version of Vizing's theorem due to Greb\'ik and Pikhurko.
翻译:我们在 LOCAL 模型中展示了一种确定式分布式算法, 该算法找到一个适当的 $ (\ Delta + 1), 以$\ mathrm {poly} (\ Delta,\ log n) 圆为最大度的 $\ Delta$ (\ Delta,\ log n) 顶端图形 。 这是第一个使用$\ Delta + 1美元的非三端分布色谱算法( 匹配 Vizing 理论的约束值 ) 。 我们的方法来源于最近由 Greb\ ik 和 Pikhurko 提供的可测量的 Vizing 定理版本的证据 。