Given a graph $G$ and an integer $k$, the $H$-free Edge Editing problem is to find whether there exists at most $k$ pairs of vertices in $G$ such that changing the adjacency of the pairs in $G$ results in a graph without any induced copy of $H$. The existence of polynomial kernels for $H$-free Edge Editing received significant attention in the parameterized complexity literature. Nontrivial polynomial kernels are known to exist for some graphs $H$ with at most 4 vertices, but starting from 5 vertices, polynomial kernels are known only if $H$ is either complete or empty. This suggests the conjecture that there is no other $H$ with at least 5 vertices were $H$-free Edge Editing admits a polynomial kernel. Towards this goal, we obtain a set $\mathcal{H}$ of nine 5-vertex graphs such that if for every $H\in\mathcal{H}$, $H$-free Edge Editing is incompressible and the complexity assumption $NP \not\subseteq coNP/poly$ holds, then $H$-free Edge Editing is incompressible for every graph $H$ with at least five vertices that is neither complete nor empty. That is, proving incompressibility for these nine graphs would give a complete classification of the kernelization complexity of $H$-free Edge Editing for every $H$ with at least 5 vertices. We obtain similar result also for $H$-free Edge Deletion. Here the picture is more complicated due to the existence of another infinite family of graphs $H$ where the problem is trivial (graphs with exactly one edge). We obtain a larger set $\mathcal{H}$ of nineteen graphs whose incompressibility would give a complete classification of the kernelization complexity of $H$-free Edge Deletion for every graph $H$ with at least 5 vertices. Analogous results follow also for the $H$-free Edge Completion problem by simple complementation.


翻译:以GG$和整数美元为单位, 以H$为单位的平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面。

0
下载
关闭预览

相关内容

【硬核书】Linux核心编程|Linux Kernel Programming,741页pdf
专知会员服务
79+阅读 · 2021年3月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【2019-26期】This Week in Extracellular Vesicles
外泌体之家
11+阅读 · 2019年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月28日
VIP会员
相关VIP内容
【硬核书】Linux核心编程|Linux Kernel Programming,741页pdf
专知会员服务
79+阅读 · 2021年3月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
【2019-26期】This Week in Extracellular Vesicles
外泌体之家
11+阅读 · 2019年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员