We present a procedure for efficiently sampling colors in the {\congest} model. It allows nodes whose number of colors exceeds their number of neighbors by a constant fraction to sample up to $\Theta(\log n)$ semi-random colors unused by their neighbors in $O(1)$ rounds, even in the distance-2 setting. This yields algorithms with $O(\log^* \Delta)$ complexity for different edge-coloring, vertex coloring, and distance-2 coloring problems, matching the best possible. In particular, we obtain an $O(\log^* \Delta)$-round CONGEST algorithm for $(1+\epsilon)\Delta$-edge coloring when $\Delta \ge \log^{1+1/\log^*n} n$, and a poly($\log\log n$)-round algorithm for $(2\Delta-1)$-edge coloring in general. The sampling procedure is inspired by a seminal result of Newman in communication complexity.


翻译:在 $( log)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\q\\\\\\\\\\\\\\\\\\\\\\\\\q\c\\\\\\\c\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\c\c\c\\\c\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\c\\\\\\\\\\\\\\\\\\\算\c\\\\\\\\\\\\\\\\\\\\\\算\算\的算\的算\的算\的算\算\的算\算\的算\的算\的算\的算\的算\的算\的算的算的算的算法程算法法法法法法法法法法法法法法法法的算通。\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Arxiv
0+阅读 · 2021年4月27日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员